K-root and DNSSEC

Anand Buddhdev
RIPE NCC
RIPE NCC

• One of the five Regional Internet Registries
• Provides IP address and AS number resources to Europe and Middle-East regions
• Operates the parent reverse DNS zones for allocations from IANA
• Operates K-root, one of the 13 root DNS servers
 - Anycast cluster of 18 instances
 - http://k.root-servers.org/
Features of DNS

• Translates names to IP addresses
• Invented around 25 years ago
• Uses UDP as its primary transport – low overhead
• Original spec limited payload to 512 bytes
• Essential for a working Internet
Security concerns of DNS

• UDP based – address spoofing
• Neither transport nor content is secure
• Protocol design limitations
 - 16-bit query ID
 - 512 bytes of payload
• Fast hardware and networks make attacks easy
 - Misdirect clients
 - Steal personal data (passwords, account numbers)
One solution: DNSSEC

- DNSSEC = DNS SECurity
- Introduces cryptographic security for content
- Been in development within IETF for about 10 years
- Uses Public Key Cryptography
 - Content is signed by private key
 - Clients on the Internet have the public key for validation
- Learn more in a DNSSEC tutorial
Consequences of DNSSEC

• Security comes at a price
 - DNS responses carry signatures and are bigger
 - Many responses are bigger than 512 bytes
 - Clients would have had to fall back to TCP

• IETF created DNS extensions to allow for larger packets (EDNS0)
 - In theory, it allows DNS speakers to use 4 kB buffers
 - The reality is quite different!
Large DNS Packets

- Some devices and software still enforce the 512-byte limit on DNS and/or UDP packets

- Path MTU limits cause packet fragmentation
 - Some firewalls block fragments
 - Originating servers don’t always get back “fragmentation needed” messages due to ICMP filtering

- TCP fallback not practical because of a large number of queries
 - TCP not suitable in anycast setups
DNSSEC in the DNS Root Zone

• The IETF considers DNSSEC to be mature enough to be deployed in the root zone
• In 2009, NTIA asked Verisign and ICANN to sign the root zone
• Much work going on, with progress updates at http://www.root-dnssec.org/
• Verisign and ICANN co-ordinating deployment with root-server operators
Staged Roll-out

• Prevents a “big bang” situation
• Clients which have problems can switch to another root server
• Allows people time to upgrade software and networks while still receiving DNS service
• Allows Verisign, ICANN, root-server operators and researchers to gauge the effects and make informed decisions
DURZ

• Deliberately Unverifiable Root Zone
• Signed zone with dummy keys
• Ensures that no-one depends upon it
• Can be withdrawn quickly without breaking service
• Real keys will be published after all root servers are serving a signed root zone
K-root Preparation

• Upgrade to NSD 3.2.4
 - Has options for tuning TCP connection limits and buffer sizes
 - Clears the DF (don’t fragment) bit on response packets – allows routers to fragment large packets

• Network upgrades
 - Upgrade to Gigabit Ethernet ports at global instances

• Co-operation with NLNet Labs on load testing of our K-root setup
Monitoring and Data Collection

- Upgraded DSC to report TCP connection rates
- Enhanced pcap filter to capture TCP queries and responses
- Special pcap filter to capture just priming queries
- Mini-DITL runs to upload pcap data to OARC before and after each root-server publishes signed zone
- Reply-size tester deployed at global instances
Reply-size Testing

• Code by Duane Wessels of OARC

• `dig +short txt test.rs.ripe.net [@resolver]`

• Hidden HTML element on `www.ripe.net` triggers the same query

• Java application on `labs.ripe.net` to perform the same test

• Helps users to figure out a reasonable buffer size for their resolvers
Tuning EDNS buffer size

• BIND and Unbound default is 4096 bytes
• For BIND 9, use “edns-udp-size n;” in options clause in named.conf
• For Unbound 1.4.0+, use “edns-buffer-size: n” in unbound.conf
• Allow TCP/53 connections through your firewall
Non-DNSSEC-aware Resolvers

x.x.x.x lacks EDNS, defaults to 512
x.x.x.x summary bs=512,rs=486,edns=0,do=0

• These resolvers are unaware of DNSSEC
• Will continue to receive DNS responses without signatures
• PowerDNS recursor, djbdns
• BIND with “dnssec-enable no;” in options clause
Public Awareness

• Articles on RIPE Labs and in Member Update
• Presentations at technical meetings and conferences
• Outreach to ISPs and network community
Questions?