The need for DNSSEC

DNS has weak inbuilt security

- ID field, 16 bit integer, returned in reply.
 - Some implementation use 14 bits
 - Multiple queries allow “birthday attack”
 - 16,384 packets is not a lot

- UDP generally preferred over TCP
 - No source address validation
 - Authoritative server addresses well known

- Spoofing data is hard to detect
 - Not much monitoring of DNS server caches
 - Increasingly targeted
DNSSEC adds security to DNS

- Authoritative server replies now signed.
 - Queries **not** signed - one way security.

- Keys published in zones like other data.
 - New DNS RR types for keys, signatures (and others) specific to DNSSEC.

- All sorts of usual stuff
 - Expiry dates for keys and signatures
 - Key rollover mechanisms
 - Support for different algorithms
Signatures

New DNS resource record RRSIG

- Sent automatically to DNSSEC aware resolvers
 - Flagged by setting D0 bit in query
- One per RRSET
 - RRSET has same owner, class and type
- Not used for NS records (more on that later)

<table>
<thead>
<tr>
<th>$ORIGIN internet.co.uk.</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ SOA ...</td>
</tr>
<tr>
<td>RRSIG SOA ...</td>
</tr>
<tr>
<td>www A ...</td>
</tr>
<tr>
<td>A ...</td>
</tr>
<tr>
<td>A ...</td>
</tr>
<tr>
<td>RRSIG A ...</td>
</tr>
</tbody>
</table>
New DNS resource record DNSKEY

- Two types of keys (convention not protocol):
 - Zone Signing Keys (ZSKs) - used to sign zone data
 - short, fast signature verification, short lifetime
 - Key Signing Keys (KSKs) - used to sign KSKs
 - long, long signature verification, long lifetime

$ORIGIN internet.co.uk.

@ DNSKEY 256 3 5 (AQOeiiR0GOMYkDshWoSKz9XzfwJr1AYtsmx3TGkJaNXVbfi/2pHm822aJ5iI9BMzNXxeYCMzZRD99WYwYqUSdjMmmAphXdvxegXd/M5+X7OrzKBaMbCvdlFLUUh6DhweJBjEVv5f2wwjM9XzcnOf+EPbtG9DMBmADjFDCzw/rjwvFw==) ; key id = 60485
Delegations

Trust passes from parent and child zones

• Reminder on delegation data
 – Child is authoritative not parent
 – If NS records disagree then child wins
 – Parent data is just a hint

• DNSSEC handles delegations to fit these principles
 – NS records are not signed
 – New DNS resource record - DS (Delegation Signer)
 • Hash of child DNSKEY record data
 • Signed itself by an RRSIG

• Passes right way up to the root zone
 – Root zone keys must be implicitly trusted.
DNSSEC made easy
The chain of trust

$ORIGIN co.uk.
internet internet DS ... 2
internet RRSIG DS ...

$ORIGIN internet.co.uk.
@ DNSKEY ... 1
@ DNSKEY ... 2
@ RRSIG DNSKEY ... 2
Provable non-existence

Two new DNS resource records - NSEC and NSEC3

- Define a span - two adjacent existing names
 - Zone file contains `aaa` and `ccc`, client asks for `bbb`
 - Server responds with NSEC for `aaa` to `ccc`
 - Proves that `bbb` does not exist

```
$ORIGIN internet.co.uk.

aaa  A ...  
RRSIG A ...
NSEC  ccc ...
RRSIG  NSEC ...

ccc  A ...
```
Recent RFCs

Tackle implementation issues

- Zone file walking
 - Using NSECs can walk a zone file
 - If privacy is not an issue then bandwidth is!
- NSEC3 used instead of NSEC where needed
 - Spans of hashed names
- Huge increase in zone file size
 - Immediate 10x size increase
- Opt-out allows choice of signed delegations
 - No child key no security on delegation
 - Allows organic zone file growth
- Not quite finished - Automated root zone key rollover
DNSSEC made easy

The practice
DNSSEC made easy

Using secured incoming DNS data

Putting into practice simpler than understanding theory

• Caveat - Not all of this is possible yet

• Securing caching resolvers
 – Find and install root zone keys (if only!)
 – Turn on DNSSEC
 – Done !!

• Securing applications at the OS level
 – Turn on DNSSEC in resolver library
 • Backwards compatibility - Use DNSSEC if present, otherwise work as before. (Now)
 • Strict DNSSEC - Only use DNSSEC, unsigned records discarded. (5 years?)
Securing outgoing DNS data

This requires planning

• Generate keys
 – Choices on key sizes - KSKs, ZSKs, size etc
 – Choices on securing keys - HSMs, silo keys etc

• Sign the zones
 – Choices on mechanism - crypto accelerators
 – Choices on signature lifetimes - resigning timetable
 – Choices on delegations - sign all or opt-out

• Resource planning
 – 10x zone file increase
 – Higher bandwidth
 – More TCP to nameserver

• Send keys to registry

DNSSEC made easy
Best practice tips

We are writing documents on this!

- Signing schedules
 - Ensure always a current signature
 - Match zone generation/reload schedule
 - Implement **continuous signing** if zones not reloaded

- Ensure always active keys
 - Key rollover strategy
 - Schedule transmission of keys to registry

- If you delegate zones as well
 - Mechanism for receiving keys
 - Manage growth of zones
DNSSEC made easy
The politics
Some early adopters

- Isolated trust anchors
 - Individual registries have signed their zones
 - .se, .pr, RIPE
 - Sysadmins must manually find and install keys
 - No automated key rollover - manual process

- Does not scale
 - Whole point of DNS is a single root!

- Others insistent they will not sign yet
 - .uk, .de - zone walking solution
 - .com - opt-out
Two different camps on signing the root

• Camp one - the ‘hidden agenda’ brigade
 – US DoC will have too much control
 – Signatures have a special meaning
 – Needs a new body to manage root signing

• Camp two - the ‘just get on with it’ brigade
 – US DoC already has control - changes nothing
 – Signatures are just error checking
 – IANA and RZM (Verisign) already control this

• Where is this going?
 – Root politics already difficult
 – IANA now ready to do this (taking over RZM function?)
 – US DoC NTIA consulting on way forward
Remember

- DNSSEC is coming
 - Internet must be secured in layers - DNS layer is critical
- Protocol is a lot to learn but straightforward
- Implementation has two parts
 - Securing incoming DNS data - simple
 - Securing outgoing DNS data - requires planning
- And by the time you are ready
 - They might have signed the root!
DNSSEC made easy

The end

Questions?

jay@nominet.org.uk